

THMC RESPONSE IN ENHANCED GEOTHERMAL RESERVOIRS

Jason Furtney
Tatyana Katsaga
Azadeh Riahi
Branko Damjanac

Overview

- Itasca Code Overview
- Application of UDEC / 3DEC to EGS.

Two code families

- FLAC & FLAC3D continuum
- *UDEC, 3DEC* & *PFC* discrete

Fish

- Windows specific
- Shared memory
- Scripting

FLAC & FLAC3D

- Specializes in modeling large deformations of non-linear materials and interaction with structures.
 - Explicit time integration
 - Lagrangian formulation
- Dynamic analysis
- Creep constitutive behavior
- Fluid and thermal analysis
- Full coupling

Limitation: Representing discontinuities

UDEC & 3DEC

- Developed to model rock masses in which joints control the mechanical behavior.
 - Easy to add any number of discontinuities
 - Direct integration of rigid body mechanics
- Rigid or deformable blocks...
- ... which interact via contact constitutive behavior
- Joint and matrix fluid flow
- Dynamic, thermal, creep & structural interaction
- Full coupling

UDEC Discrete Blocks

UDEC Joint fluid flow

Limitation: Discontinuities must be predefined

PFC

- Rigid sphere discrete element code
- Particle bonding modeling intact rock, fracturing and flow of granular material.
- Fracture growth and interaction with existing fracture networks.
- Coupled Fluid flow, thermal, multi-physics.

Limitation: Research code, less "solution oriented"

APPLICATION TO EGS RESERVOIRS

Approach

- DFN realizations represented explicitly in 3DEC
- Stimulation phase of EGS is modeled using hydro-mechanical response of the DFN to fluid injection
- Sensitivity of stimulation is performed for:
 - DFN characteristics
 - Different open-hole completion lengths along the borehole
- Model responses are compared quantitatively and qualitatively, in terms of a series of indices

DFN Realizations

Power law distribution

frequency

 $n(l) \propto l^{-\alpha}$ lmin lmax

Evolution of apertures in Case 1

Evolution of apertures in Case 3

14

Conclusions

- Fluid flow propagation in low permeability reservoirs highly depend on DFN characteristics.
- The presence of large fractures can cause localized flow and asymmetrical shapes of stimulated volume. Asymmetric responses to hydraulic fracturing is frequently reported by recorded microseismic data.

Summary of 2D Case Studies

New studies are performed with respect to

- Effect of well positioning
 - Relative to fracture orientation
 - Injection-production well distance

Previous studies are repeated in 2km by 2km DFN with different well spacing, well positioning, and longer stimulation periods:

- Effect of fracture spacing/density
- Effect of production rate
- Effect of exponent of fracture size
- Effect of fracture orientation
- Effect of stimulation rate
- Effect of stiffness
- Effect of stimulation rate history

Schematic representation of UDEC model

Model Setup

- Two preexisting joint sets
 - 160° and 45° to major principle stress
 - Stress ratio of 0.5
 - Open and conductive at t=0
 - Apertures: 3e-5m and 1e-5m
- Model
 - Fracture flow only
 - Impermeable elastic blocks
 - 30° friction angle and 7.5° dilation

Middle Along Primary Along Secondary 250 m 500 m 800 m No production No production

Production Indices

- Case I shows the quickest temperature draw-down
- Case III shows the slowest temperature draw-down
- In case we spacing of 800 m only one case was producing
- The cases compared have 100% recovery

Observation

- Positioning of the wells off the primary path is effective.
- Increasing the well distances is the most effective way of reducing temperature drawdown; however, injectivity decreases and the potential of loss of fluid increases.

Thank You